Science/Technology

Study sheds light on where conscious experience resides in brain

Study sheds light on where conscious experience resides in brain

19 July, 2023

Researchers from Hebrew University of Jerusalem and UC Berkeley recorded electrical activity in the brains of epilepsy patients while showing them various images in an attempt to find out where persistent images are stored in the brain and how we consciously access those images

Read More

Researchers from the Hebrew University of Jerusalem and the University of California, Berkeley, have made progress in understanding the puzzling affliction known as unilateral neglect, where stroke victims lose conscious awareness of half of what their eyes perceive. The scientists have identified a region in the brain where sustained visual images are retained for a few seconds. By recording brain activity from electrodes placed on patients' brains, they discovered that visual areas of the brain retain information about a perceived object at a low level of activity for an extended period, suggesting a neural basis for stable perception. The prefrontal and parietal cortexes become active when something new is perceived, while the occipitotemporal area of the visual cortex maintains a sustained but low level of activity. These findings provide insights into the difference between perceiving something and being consciously aware of perceiving it, which could have implications for coma patients and the development of treatments for consciousness disorders.

 

More than a quarter of all stroke victims develop a bizarre disorder — they lose conscious awareness of half of all that their eyes perceive.

After a stroke in the brain's right half, for example, a person might eat only what's on the right side of the plate because they're unaware of the other half. The person may see only the right half of a photo and ignore a person on their left side.

Surprisingly, though, such stroke victims can emotionally react to the entire photo or scene. Their brains seem to be taking it all in, but these people are consciously aware of only half the world.

This puzzling affliction, called unilateral neglect, highlights a longstanding question in brain science: What's the difference between perceiving something and being aware or conscious of perceiving it? You may not consciously note that you passed a shoe store while scrolling through your Instagram feed, yet you started searching online for shoe sales. Your brain records things that you don't consciously take note of.

Neuroscientists from the Hebrew University of Jerusalem and the University of California, Berkeley, now report that they may have found the region of the brain where these sustained visual images are retained during the few seconds we perceive them. They published their findings last week in the journal Cell Reports.

"Consciousness, and in particular, visual experience, is the most fundamental thing that everyone feels from the moment they open their eyes when they wake up in the morning to the moment they go to sleep," said Hebrew University graduate student Gal Vishne, lead author of the paper. "Our study is about your everyday experience."

While the findings do not yet explain how we can be unaware of what we perceive, studies like these could have practical applications in the future, perhaps allowing doctors to tell from a coma patient's brain activity whether the person is still aware of the outside world and potentially able to improve. Understanding consciousness may also help doctors develop treatments for disorders of consciousness.

"The inspiration for my whole scientific career comes from patients with stroke who suffer from unilateral neglect, where they just ignore half of the world," said senior author Leon Deouell, a Hebrew University professor of psychology and member of the Edmond and Lily Safra Center for brain research. "That actually triggered my whole interest in the question of conscious awareness. How is it that you can have the information, but still not acknowledge it as something that you're subjectively experiencing, not act upon it, not move your eyes to it, not grab it? What is required for something not only to be sensed by the brain, but for you to have a subjective experience? Understanding that would eventually help us understand what is missing in the cognitive system and in the brains of patients who have this kind of a syndrome."

"We are adding a piece to the puzzle of consciousness — how things remain in your mind's eye for you to act on," added Robert Knight, also a senior author and a UC Berkeley professor of psychology and member of the Helen Wills Neuroscience Institute.

The brain has a transient and a sustained response

Deouell noted that for some six decades, electrical studies of the human brain have almost solely concentrated on the initial surge of activity after something is perceived. But this spike dies out after about 300 or 400 milliseconds, while we often look at and are consciously aware of things for seconds or longer.

"That leaves a whole lot of time which is not explained in neural terms," he said.

In search of longer-lasting activity, the neuroscientists obtained consent to run tests on 10 people whose skulls were being opened so that electrodes could be placed on the brain surface to track neural activity associated with epileptic seizures. The researchers recorded brain activity from the electrodes as they showed different images to the patients on a computer screen for different lengths of time, up to 1.5 seconds. The patients were asked to press a button when they saw an occasional item of clothing to ensure that they truly were paying attention.

Most methods used to record neural activity in humans, such as functional MRI (fMRI) or electroencephalography (EEG), only allow researchers to make detailed inferences about where brain activity is happening or when, but not both. By employing electrodes implanted inside the skull, the Hebrew University/UC Berkeley researchers were able to bridge this gap.

After analyzing the data using machine learning, the team found that, contrary to earlier studies that saw only a brief burst of activity in the brain when something new was perceived, the visual areas of the brain actually retained information about the percept at a low level of activity for much longer. The sustained pattern of neural activity was similar to the pattern of the initial activity and changed when a person viewed a different image.

"This stable representation suggests a neural basis for stable perception over time, despite the changing level of activity," Deouell said.

Unlike some earlier studies, they found that the prefrontal and parietal cortexes in the front of the brain become active only when something new is perceived, with information disappearing entirely within half a second (500 milliseconds), even for a much longer stimulus.

The occipitotemporal area of the visual cortex in the back of the brain also becomes very active briefly — for about 300 milliseconds — and then drops to a sustained but low level, about 10% to 20% of the initial spike. But the pattern of activity does not go away; it actually lasts unaltered about as long as a person views an image.

"The frontal cortex is involved in the detection of something new," Deouell explained. "But you also see an ongoing representation in the higher-level sensory regions."

The sequence of events in the brain could be interpreted in various ways. Knight and Vishne lean toward the idea that conscious awareness comes when the prefrontal cortex accesses the sustained activity in the visual cortex. Deouell suspects that consciousness arises from connections among many areas of the brain, the prefrontal cortex being just one of them.

The team's findings have been confirmed by a group that calls itself the Cogitate Consortium. Though the consortium's results are still awaiting peer review, they were described in a June event in New York City that was billed as a face-off between two "leading" theories of consciousness. Both the Cell Reports results and the unpublished results could fit either theory of consciousness.

"That adversarial collaboration involves two theories out of something like 22 current theories of consciousness," Deouell cautioned. "Many theories usually means that we don't understand."

Nevertheless, the two studies and other ongoing studies that are part of the adversarial collaboration initiated by the Templeton Foundation could lead to a true, testable theory of consciousness.

"Regarding the predictions of the two theories which we were able to test, both are correct. But looking at the broader picture, none of the theories in their current form work, even though we find each to have some grain of truth, at the moment," Vishne said. "With so much still unknown about the neural basis of consciousness, we believe that more data should be collected before a new phoenix can rise out of the ashes of the previous theories. "

Future studies planned by Deouell and Knight will explore the electrical activity associated with consciousness in other regions of the brain, such as the areas that deal with memory and emotions.

Edden Gerber is also a co-author of the paper. The study was supported by the U.S.-Israel Binational Science Foundation (2013070) and the National Institute of Neurological Disorders and Stroke of the National Institutes of Health (R01 NS021135).

Read Less
New Hope for Inflammatory Disorders

New Hope for Inflammatory Disorders

19 July, 2023

New Hope for Inflammatory Disorders -
Controlling Dangerous Immune Response

Read More
The inflammatory response is indispensable for protective immunity, yet microbial pathogens often trigger an excessive response, ‘cytokine storm’, harmful to the host. Despite recent advances in our understanding of inflammatory signaling, how to prevent a cytokine storm remains a challenge. A groundbreaking study has uncovered exciting possibilities for treating inflammatory disorders and preventing cytokine storms, which can be damaging to the body and even lethal. Scientists have discovered that: particular domains within key mediators of our immune response, called B7 and CD28 receptors, have a crucial role in enabling the inflammatory response and can be targeted with man-made molecules to manage immune responses and inflammation, saving lives. These findings bring us one step closer to developing effective treatments for inflammatory diseases.

 

A team of researchers at the Faculty of Medicine of the Hebrew University of Jerusalem, conducted this study with the aim of understanding how our immune system works and why it sometimes goes into overdrive during severe infections and autoimmune diseases. They created small copies of specific domains within the B7 and CD28 receptors, called mimetic peptides, to investigate how these affect the production of inflammatory molecules.

The study's results showed that these mimetic peptides successfully reduced the interaction between B7 and CD28 receptor proteins and thereby lowered the production of inflammatory molecules in human immune cells. This suggests that they could be used to develop treatments for inflammatory disorders, for example, in bacterial infections, in severe sepsis, and in viral infections involving lung injury such as influenza and corona.

Excitingly, when tested on mice, these mimetic peptides provided significant protection against lethal toxic shock caused by a harmful bacterial toxin that kills by eliciting an inflammatory cytokine storm. Even at exceedingly low doses, the specific B7-1 and CD28 mimetic peptides showed remarkable effectiveness in preventing the harmful effects of the toxin and protecting from death. "Our findings demonstrate for the first time the critical role played by these B7 and CD28 receptor domains in controlling immune responses and inflammation," said Prof. Raymond Kaempfer, of the Faculty of Medicine at the Hebrew University of Jerusalem. "By selectively reducing inflammation yet without completely stopping it, we may be able to protect against cytokine storms associated with severe infections and autoimmune diseases."

This research opens up new possibilities for developing targeted therapies that can balance immune activation needed to protect from pathogens yet prevent excessive inflammation. By regulating the interaction between B7 and CD28 receptors, we may be able to fine-tune the immune response and prevent harmful inflammatory reactions.

Funding: This work was supported by the US National Institute of Allergy and Infectious Diseases (NIAID) grants UC1AI067231 and 2U54AI057168, grant DM170164 from US Department of Defense Congressionally Directed Medical Research Programs (CDMRP) and the Milgrom Family Foundation to R. Kaempfer.

The research team consists of: Prof. Raymond Kaempfer, Dr. Andrey Popugailo, Dr. Ziv Rotfogel, Michal Levy, Orli Turgeman, Dalia Hillman, Dr. Revital Levy, Dr. Gila Arad, Dr. Tomer Shpilka – The Institute of Medical Research Israel-Canada at the Hebrew University-Hadassah Medical School.

Link to the publication: https://rdcu.be/dfCLm 

Read Less
DNA Evidence Triples Prosecution Rates in Criminal Cases, Reveals New Study in Israel

DNA Evidence Triples Prosecution Rates in Criminal Cases, Reveals New Study in Israel

16 July, 2023

A recent study conducted by the Hebrew University of Jerusalem sheds light on the impact of DNA profiles on prosecutorial decisions in the criminal justice system.

Read More

In the pursuit of justice, law enforcement agencies heavily rely on forensic evidence, with DNA testing constituting the cornerstone of modern investigations. While the scientific and technological advancements in DNA testing have been extensively studied, there is scant evidence regarding how the availability of DNA evidence influences prosecutors’ decisions to move cases forward.

To address this knowledge gap, the research team created a unique database by combining data from the Forensics Division of the Israel Police, which documented the presence or absence of DNA profiles in criminal cases (n = 9862), with data on each case’s subsequent indictment decision from 2008 to 2019.

This extensive dataset’s analysis yielded significant insights into the impact of DNA evidence on criminal prosecutions. The researchers discovered that roughly 15% of all criminal cases presented to the prosecutor’s office were ultimately prosecuted. In stark contrast, the criminal justice system advanced approximately 55% of cases with DNA profiles. This effect demonstrates the significant influence DNA evidence has on the decisions of prosecutors.

The findings highlight the significance of using a scientific approach to prosecute offenders, recognising the value DNA evidence brings to the criminal justice system. However, the researchers caution against the indiscriminate use of DNA evidence and emphasise the necessity of prudence. DNA evidence is a potent tool, but it is not infallible; therefore, its use in the legal system must be carefully considered. The study encourages a balanced approach that harnesses the benefits of DNA evidence while acknowledging its limitations.

This research contributes to the ongoing dialogue surrounding the role of forensic evidence in criminal investigations, specifically highlighting the impact of DNA profiles on prosecution decisions in Israel. The findings have implications for law enforcement agencies, legal professionals, and policymakers involved in the pursuit of justice.

The study, titled “ The role of DNA in criminal indictments in Israel" was published in the Journal of Forensic Sciences - https://onlinelibrary.wiley.com/doi/pdf/10.1111/1556-4029.15327

The research team consisted of Esther Buchnik, Institute of Criminology, The Hebrew University of Jerusalem, Prof. Barak Ariel Institute of Criminology, University of Cambridge, Prof. Avi Domb Faculty of Medicine and the Institute of Criminology, The Hebrew University of Jerusalem, Nir Treves Faculty of Medicine, The Hebrew University of Jerusalem, Dr. Ron Gafny, Division of Identification and Forensic Science, Israel Police.

 

Methodology: The records examined were from 2008-2019. Over the study period, the average rate of indictment in all cases was approximately 15.1%, with a relatively stable variance [standard deviation (SD) of 0.8%]. However, 45.9% of criminal cases with DNA were subsequently indicted, with a steady yet clear increase over time (from 26.3% to 53.6% in 2019; SD = 11.8%).

The Hebrew University of Jerusalem is Israel’s premier academic and research institution. With over 23,000 students from 80 countries, it is a hub for advancing scientific knowledge and holds a significant role in Israel’s civilian scientific research output, accounting for nearly 40% of it and has received over 11,000 patents. The university’s faculty and alumni have earned eight Nobel Prizes and a Fields Medal, underscoring their contributions to ground-breaking discoveries. In the global arena, the Hebrew University ranks 77th according to the Shanghai Ranking, making it the top-ranked Israeli institution. To learn more about the university’s academic programs, research initiatives, and achievements, visit the official website at http://new.huji.ac.il/en

 

 

 

Read Less
Einstein House at the Hebrew University

Einstein House at the Hebrew University

14 June, 2023

The President of Israel, the President of the Hebrew University, the Mayor of Jerusalem, and art art collecter Jose Mugrabi
laid the cornerstone of a house to display Einstein’s legacy

Read More

President Isaac Herzog of Israel, Hebrew University President Prof. Asher Cohen, Jerusalem Mayor Moshe Leon, and Mr. Jose Mugrabi, a prominent art collector, laid the cornerstone for Einstein House, at the Hebrew University’s Edmond J. Safra campus, on Givat Ram, in Jerusalem.

The Einstein House will house exhibits of the legacy, work, and research of Nobel laureate Albert Einstein, one of the founders of the Hebrew University, who bequeathed all his writings and intellectual property to it. The House will serve as a center for scientific and technological education and employ modern display techniques, scientific demonstrations, and original documents to showcase Einstein’s immense contribution to science. The distinctive building, designed by the world-renowned architect Daniel Libeskind, will highlight the impact of Einstein's discoveries, his involvement in humanitarian and civil rights issues, as well as his deep commitment to Hebrew University, the State of Israel, and the global Jewish community. The public will be able to tour a reconstructions of his personal library, his office, and view original documents, including on the general theory of relativity and the manuscript containing the famous equation E=mc².

 

President Isaac Herzog said that ‏“It is a great pleasure to be addressing you here at ‏the Board of Governors meeting at this great Israeli institution, the Hebrew University of Jerusalem. ‏I am especially excited to be here to lay the cornerstone for Einstein’s House. Right here, we are laying the foundations for a vital living archive of the writings of one of the greatest minds in the history of humanity.

But we are also laying the foundations for a beautiful building designed by the architect Daniel Libeskind, for a legacy that goes far beyond any one person alone: This is the legacy of human curiosity – ‘holy curiosity’ as Einstein himself put it.
Over the past century The Hebrew university has blossomed into a world-class institution that is at the forefront of global research and of contribution. I thank the government of Israel and other partners in this wonderful project, for moving this project and initiative so that we can realize it hopefully in two years’ time when we will celebrate 100 years to the founding of the university.”

At the ceremony, Hebrew University president Prof. Asher Cohen observed that the “Einstein House will provide the general public with a look at the science of the man who sketched out the path for us and who, a century later, continues to serve us as a model of scientific excellence day after day. Our task is first and foremost to practice science and produce breakthroughs that will improve the life of all humanity; but a no less important part of this task is to explain science and make it make accessible to large audiences. This is precisely the vision behind the Einstein House.”

Jerusalem Mayor Moshe Lion: "The Einstein House will be established here, in this place, as a living monument, to the ideal of academic excellence, to the value of exploring, discovering, and learning more about the world around us. The Einstein House will be a house of learning, and a house of teaching. A house where everyone who enters, will leave richer in knowledge, with a better understanding of the past, and greater hope for the future. I want to congratulate all the partners in this amazing project. I have no doubt it will make a significant contribution to the city and to the students."

Jose Mugrabi, philanthropist and art collector: “We look forward to seeing the wonders that this House will bring to Israel and the rest of the world in the future. The Einstein House represents so much more than the physical space. It will be a center of science and technology for our students, and we are convinced that this place will create a new generation of Einsteins.

I am so excited to be here tonight and to be associated with Albert Einstein. In my past I didn’t study practically at all, and tonight to be associated with the genius of the century – I have no words. I feel like the luckiest man in the world.”

 

 

Read Less
Hebrew University’s Asper Prize Startup Award 2023, Avertto

Hebrew University’s Asper Prize Startup Award 2023, Avertto

12 June, 2023

(L-R) Anita Wortzman, Gail Asper, Dr. Hila Ben-Pazi, Prof. Asher Cohen, Yaniv Kirma, Ayelet Cohen, Dr. Amnon Dekel, Shira Gershuni – (photo credit: BRUNO SHARVIT)

Read More
45 starts ups competed leading to a shortlist of 5 hoping to win the 100,000 Shekel prize. The winner, Avertto, developed a device and monitoring system which creates an alert in the event of imminence of stroke.

Click here to read more.

Read Less
Israeli astrophysicists may have solved the mystery of early massive galaxies

Israeli astrophysicists may have solved the mystery of early massive galaxies

1 June, 2023

A new theoretical model made by Israeli astrophysicists reveals an excess of massive galaxies, in contrast to previously accepted theories.

Read More

The mystery of the formation of early massive galaxies in the universe has finally been solved by astrophysicists from the Hebrew University of Jerusalem (HU) who have published a new theoretical model that explains recent observations that used NASA's James Webb Space Telescope (JWST).

They said they revealed a surprising excess of massive galaxies in the universe – already in the first half billion years after the Big Bang – contrary to the commonly accepted theory.

The team published their findings in Monthly Notices of the Royal Astronomical Society under the title “Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts.”  

 

 

Researchers discover excess of massive galaxies

The James Webb telescope was launched into space at the end of 2021 and started producing images of distant galaxies as early as last July. The researchers unexpectedly discovered an excess of massive galaxies in the early universe compared to the number of galaxies expected according to the common theory.

According to the researchers’ proposed model, the special conditions that prevailed in the primordial galaxies, of high density and low abundance of heavy elements, allowed the formation of stars with high efficiency without interference from other stars. 

The research team from HU’s was led by Prof. Avishai Dekel with Dr. Kartick Sarkar, Prof.  Yuval Birnboim, Dr. Nir Mandelker and Dr. Zhaozhou Li. The Racah Institute of Physics, located on the university’s Safra Campus (Givat Ram) campus, has some 90 faculty members who teach and carry out research in the fields of astrophysics, condensed matter physics, high energy physics, bio and non-linear physics, nuclear physics, and atomic, molecular and optical physics.

“Already in the first half-billion years, researchers identified galaxies that each contain about ten billion stars like our Sun,” Dekel explained. “This discovery surprised researchers who tried to identify plausible explanations for the puzzle, ranging from the possibility that the observational estimate of the number of stars in galaxies is exaggerated, to suggesting the need for critical changes in the standard cosmological model of the Big Bang.”

 

According to the prevailing theory of galaxy formation, gravity causes gas scattered in the universe to collapse into the centers of giant spherical clouds of dark matter, where it becomes luminous stars, like the Sun. But theory and observations until now have shown that the efficiency of star formation in galaxies is low, with only about 10% of the gas that falls into the clouds becoming stars.

The inefficiency is caused by remaining gas heating up or being blown out of galaxies under the influence of winds and supernova explosions from the stars that manage to form first. This contradicts recent JWST indications of vast amounts of stars created in a short time frame, he continued. 

Is this the key to explaining super-massive black holes?

In this study, Dekel and his team proposed a process termed “feedback-free starburst” (FFB), which naturally explains the mystery. Under the unique conditions prevalent in early galaxies, gas efficiently turns into stars without being disrupted by feedback processes.

This idea is based on a time delay of more than a million years between the formation of massive stars and their subsequent explosions as supernovae.

Before the enrichment of the gas by heavy elements produced in stars, the researchers suggest star-forming clouds in the dense early universe had a density above a threshold that allowed the rapid collapse of the gas into stars within the “window of opportunity” of one million years. This process of high-efficiency star formation in the absence of feedback explains the observed excess of massive galaxies.

“The publication of this research marks an important step forward in our understanding of the formation of primordial massive galaxies in the universe and will no doubt spark further research and discovery,” Dekel concluded.

“The predictions of this model will be tested using the accumulating new observations from the Web Space Telescope, where it seems that some of these predictions are already confirmed. Important implications of the proposed FFB scenario will be investigated in future studies.

These include the efficient formation of seed black holes of a thousand solar masses in the centers of the FFB star-forming clusters, which are key to explaining the surprisingly supermassive black holes of a billion solar masses seen in centers of galaxies half a billion years later.”

 

 

 

Read Less
French dairy giant Danone leads $3.5m investment into Israeli cultured milk startup

French dairy giant Danone leads $3.5m investment into Israeli cultured milk startup

4 April, 2023

Strategic investment by company’s venture arm includes potential collaboration on cultured breast milk products; other investors include Steakholder Foods and Coca-Cola Israel

Read More

 

French dairy giant Danone has entered into a strategic investment agreement with Israeli startup Wilk, which could lead to a collaboration with the food tech firm to develop cultured breast milk components for infant formula based on its cell technology.

Danone Manifesto Ventures (DMV), the corporate venture arm set up by the Paris-based food giant, will invest $2 million, leading a $3.5 million financing round announced by Wilk, in a filing to the Tel Aviv Stock Exchange on Monday.

Following the investment, the venture arm of the dairy company, which makes Activia yogurt, Aptamil infant formula and Evian water, will hold at least 2% of Wilk’s share capital.

 

Dr. Nurit Argov-Argaman of the Hebrew University of Jerusalem founded Wilk (as Biomilk) in 2018, and has since developed cell-based technology to produce cultured human breast and animal milk. Argov-Argaman took it public on the TASE in 2021 in a SPAC (special-purpose acquisition company) merger deal.

For the animal-derived cultured milk, Wilk isolates the milk-producing cells from cows’ udders and transfers them to a bioreactor, where they are exposed to materials patented by the firm to produce milk ingredients, but without needing a cow in the final milk-producing process.

 

The process is also applied to the lab production of human breast milk — complete with the fats and proteins that make up important parts of the nutritional value — using cells from breast reduction surgeries.

As part of the strategic agreement between Danone’s venture arm and Wilk, the parties will examine strategic cooperation for the development of breast milk substitutes that will include lab-grown breast milk components.

The agreement also stipulates that Danone and Wilk will examine possibilities for joint commercial cooperation and operations, which may include agreements for joint development and grants for projects in Europe and the US, Wilk said in a statement.

 

Wilk CEO Tomer Aizen said that DMV’s investment will help the firm continue in the development of its cultivated milk products.

Wilk is one of several Israeli food tech companies developing cultured, animal-free milk, each at a different development stage. Rehovot-based Remilk, for example, last year raised $120 million for cow-free milk, cheese and yogurt, and with production capabilities already off the ground. The developer of cultured milk and dairy has also announced plans to open the “world’s largest” facility for the production of cow-free milk in Denmark.

However, Wilk is one of few companies on the world stage in the cultured breast milk sector. Wilk’s offering could be a welcome alternative for those who prefer to give human milk, but face difficulties breastfeeding, for babies born prematurely, and for those who cannot consume commercial infant formula.

Wilk said it is not necessarily looking to replace infant formula, but to contribute to a product that is better nutritionally and with a cost comparable to formula.

As such, the Rehovot-based startup has been focusing on developing cell-cultured human milk fat for infant formula to replace vegetable fats currently contained in formula. The nutritional benefits of cultured human milk fat play a central role in maintaining an infant’s digestive system, as well as the development of its brain and nervous system, according to Wilk.

Other investors in the latest funding round, include Rehovot-based Steakholder Foods (formerly Meatech), an Israeli maker of cultivated meat products, which will purchase $450,000 in ordinary shares of Wilk at a 15% discount below their 45-day average closing price, giving the company a 2.5% stake in the Israeli startup. Steakholder Foods said it seeks synergies with Wilk, including strategic cooperation on its proprietary biology and printing technologies.

 

The Central Bottling Company, also known as Coca-Cola Israel, is also participating in the funding round. The owner of the Tara dairy cooperative, Israel’s second-largest milk processing company, invested $2 million in Wilk back in 2021 as part of an agreement to develop products based on the startup’s cultured milk technology.

As part of the financing round, Wilk will issue a total of 13.6 million ordinary shares in a private placement at a price of NIS 0.91 per share. The startup’s shares closed 10% lower on Monday at NIS 105.1 per share.

 

from: The Times of Israel

 

 

 

Read Less