check
Science/Technology | EUROPEAN FRIENDS OF THE HEBREW UNIVERSITY

Science/Technology

d

Clone of New Study Reveals Insights How Pollution Affects Clouds and Climate

23 November, 2023

A recent study reveals the profound impact of pollution on cloud behavior. This newfound understanding illuminates the intricate ways in which pollution alters our climate. Such research marks a significant stride in comprehending the influence of pollution on our weather and broader climate dynamics. Emphasizing the need to factor in both localized cloud formations and overarching climate patterns, it underscores the criticality of considering all scales in studying the effects of pollution on our climate.

 

h

Extended Habitability of Exoplanets Due to Subglacial Water

9 November, 2023

 

Professor Amri Wandel, from Hebrew University of Jerusalem, has unveiled research that promises to redefine our comprehension of habitable exoplanets. In a recent study published in the Astronomical Journal, Professor Wandel introduces the concept of subglacial liquid water as a pivotal element in broadening the boundaries of the conventional Habitable Zone.

 

hfdg

A wave theory for a neurochemical balance in the brain

30 October, 2023

In a new study, a group of researchers, led by Dr. Joshua Goldberg from the Hebrew University, describe a new kind of neurochemical wave in the brain. Their research, published in Nature Communications, unveils the existence of traveling waves of the neurochemical acetylcholine in the striatum, a region of the brain responsible for motivating actions and habitual behaviors.

 

ads

Urgent Plea: Immediate Action for Abductees in Gaza

25 October, 2023

 

The International Human Rights Clinic, part of the Clinical Legal Education Center at the Law Faculty of Hebrew University of Jerusalem, on behalf of The Hostages and Missing Families Forum, urgently calls upon the Working Group on Enforced or Involuntary Disappearances in Geneva to issue an immediate demand to the Hamas for the disclosure and clarification of the fate and whereabouts of every individual they are holding or has gone missing.

Clone of Israeli scientists say viruses can beat bacteria that resist antibiotics

Clone of Israeli scientists say viruses can beat bacteria that resist antibiotics

9 August, 2023

The study paves the way for future clinical trials and encourages further exploration of phage therapy as an alternative and auxiliary approach against antibiotic-resistant infections

Read More

The growing resistance of bacteria to antibiotics worries doctors and researchers around the world. Now, an international study led by a team at Hadassah-University Medical Center and the Faculty of Dental Medicine of the Hebrew University of Jerusalem shows the potential effectiveness of PASA16 bacteriophage therapy in coping with dangerous Pseudomonas aeruginosa infections.

The study paves the way for future clinical trials and encourages further exploration of phage therapy as an alternative and auxiliary approach against antibiotic-resistant infections, the authors suggested.

Ran Nir-Paz, an associate professor of clinical microbiology and infectious diseases at Hadassah, who also works at Hebrew University and Hadassah’s Israeli Phage Therapy Center, and Dr. Ronen Hazan, from the bioresearch institute at the university’s dental school, headed the team that published the study in the journal Clinical Advances. It was entitled “Refractory Pseudomonas aeruginosa infections treated with phage PASA16: A compassionate-use case series.”

How can viruses be used to help where antibiotics can't?

The use of specific antibacterial viruses against infections has aroused much attention as a critical addition to conventional antibiotics, although there have been few clinical trials to test phages on patients. This was the largest study of its kind, and so far it has produced an impressive 86.6% success rate.

Pseudomonas aeruginosa is a bacteria found in the environment – in soil, water, and plants – and as part of bacteria in humans. It is both a pathogen and opportunistic bacteria, causing infections in patients with weakened immune systems or underlying chronic illnesses.

Before the treatment began, all Pseudomonas aeruginosa samples from patients were tested, and treatment was personalized in those who were found to be sensitive to the PASA16 phage.

During the PASA16 phage treatment, only minor and manageable side effects were observed. Remarkably, 13 out of 15 patients with available data had a favorable clinical outcome. The duration of treatment spanned from eight days to six weeks, with one- to twice-daily regimen

This highlights the potential of combining PASA16 phage with antibiotics as a promising approach for patients with previously unsuccessful treatments.

“We are elated by the promising results of our study using phage PASA16 to treat tough Pseudomonas aeruginosa infections,” wrote the Israeli researchers, who were joined by colleagues in Israel, the US, and Australia. “This groundbreaking research offers hope for patients with persistent infections and highlights the potential of phage therapy as a valuable alternative to conventional antibiotics in combating antibiotic-resistant pathogens.”

Bacteriophage, also called phage or bacterial virus, belong to a group of viruses that infect bacteria. They were discovered independently by Frederick Twort in Great Britain in 1915 and Félix d’Hérelle in France in 1917. D’Hérelle coined the term bacteriophage, meaning “bacteria eater,” to describe the agent’s ability to destroy bacteria.

Thousands of varieties of phages exist, each of which may infect only one type or a few types of bacteria. Like all viruses, phages are simple organisms that consist of a core of genetic material (nucleic acid) surrounded by a protein capsid. The nucleic acid may be either DNA or RNA and may be double-stranded or single-stranded.

Phages have been used since the late 20th century as an alternative to antibiotics in the former Soviet Union and Central Europe, as well as in France. They are regarded as a possible therapy against multi-drug-resistant strains of many bacteria.

The authors said their work highlighted the potential of combining PASA16 phage with antibiotics as a promising approach for patients with previously unsuccessful treatments.

“By outlining potential clinical protocols, this study paves the way for future trials,” they wrote. “The success observed encourages further research and exploration of phage therapy as an alternative and complementary approach to combat antibiotic-resistant infections.”

These bacterial infections can range from mild to severe, affecting various body parts, including the lungs, urinary tract, skin, and wounds. It is a common cause of hospital-acquired infections, particularly in patients with weak immune systems or those using mechanical ventilation or invasive devices.

The pathogen’s ability to form protective biofilms hinders treatment, sometimes necessitating the combination of antibiotics and alternative therapies such as phage therapy. Strict infection-control measures in healthcare facilities are essential to combat its persistence.

The phage, which was provided pro bono by the US phage company Adaptive Phage Therapeutics, was given using various methods, including intravenous, local application to the infection site, and topical use.

Link to the publication: www.jpost.com

 

 

 

 

Read Less
Israel unveils miniature human heart model to transform drug testing

Israel unveils miniature human heart model to transform drug testing

8 August, 2023

A minuscule model of a human heart, the size of a grain of rice, has been created in Israel. With the potential to put an end to the often criticized animal testing by pharmaceutical companies.

Read More
In a major breakthrough, a collaborative team of Israeli researchers has unveiled a miniature human heart model that could potentially transform drug testing and cardiovascular research, providing alternatives to animal testing. The self-paced multi-chambered human heart model – no larger than a grain of rice – promises to revolutionize the way the heart and its functions are studied.

The team was led by Yaakov Nahmias, a bioengineering professor from the Hebrew University of Jerusalem, and included scientists from the Technion-Israel Institute of Technology in Haifa, and Rehovot-based Tissue Dynamics Ltd., which is devoted to animal-free drug development.

Their discovery marks “a new era in cardiovascular research, multi-chambered, self-paced miniature heart model, holding the key to saving lives and enhancing patient outcomes,” they said in the study.

 

Sensors also revealed a new mechanism of cardiac arrhythmia not found in small animals, promising alternatives to animal testing.

This study, just published in the prestigious Nature Biomedical Engineering, was entitled “Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids.”

Cardiovascular diseases remain – together with cancers – the leading causes of death around the world, underscoring the critical importance of their pioneering work.

Nahmias and his team embarked on an intricate effort to create an accurate replica of the human heart, using human-induced pluripotent stem cells (hiPSCs). The resulting model comprises multiple chambers, pacemaker clusters, epicardial membrane, and endocardial lining, all meticulously designed to mimic the structure and functions of the human heart.

One of the most significant features of this heart model is its ability to provide real-time measurements of essential parameters, such as oxygen consumption, extracellular field potential, and cardiac contraction. This capability made it possible for the scientists to gain unprecedented insights into heart function and diseases.

What are the implications for future medical practice?

The research team has already made groundbreaking discoveries that were previously unattainable using conventional methods. The tiny heart model presented a new form of cardiac arrhythmia that is distinct from those observed in traditional animal models, thus offering new paths for studying human physiology.

The implications of this discovery extend to the pharmaceutical industry, as it allows researchers to gain invaluable insights into the precise effects of pharmaceutical compounds on the human heart. The heart model’s response to the chemotherapeutic drug mitoxantrone, which is commonly used to treat leukemia and multiple sclerosis, was carefully tested.

Through these experiments, the researchers pinpointed how mitoxantrone induces arrhythmia by disrupting the heart’s electro-mitochondrial coupling. They also discovered a potential solution by administering the common diabetes drug metformin, which showed promise in mitigating some of the drug’s adverse effects.

Nahmias, who is the director of Hebrew University’s Grass Center for Bioengineering and a fellow of the Royal Society of Medicine and the American Institute for Medical and Biological Engineering, stressed the significance of their work.

“The integration of our complex human heart model with sensors allowed us to monitor critical physiological parameters in real-time, revealing intricate mitochondrial dynamics driving cardiac rhythms,” he said. “It is a new chapter in human physiology.”

The scientists partnered with Tissue Dynamics, which focuses on reducing research and development costs for drugs by 30% to 80% by providing groundbreaking drug toxicity and efficacy tools for the pharmaceutical industry. Its proprietary screening platform uses tissue-embedded microsensors in a micro-physiological environment to monitor changes in tissue function in real-time.

The Nachmias team developed a robotic system that can screen 20,000 tiny human hearts in parallel for applications to drug discoveries. The potential applications of this micro-physiological system are huge, promising to enhance our understanding of heart physiology and speed up the discovery of safer and more effective pharmaceutical interventions and leading to a healthier future for all.

 

By offering unparalleled accuracy and insights into cardiovascular diseases, this advanced human heart model has the potential to revolutionize drug-testing methodologies. With this tiny heart model, researchers are poised to make significant strides in developing safer and more effective medications for patients worldwide, potentially saving lives and improving patient outcomes.

The miniature heart model also presents an ethical advantage, as it offers a viable alternative to animal testing. This breakthrough could mark a turning point in the pharmaceutical industry, reducing reliance on animal models and minimizing potential harm to animals in the pursuit of medical advancements.

The scientists concluded that their tiny heart represents a monumental achievement with far-reaching implications for medical research.

“This miniature-yet-sophisticated human heart model has the potential to reshape drug testing practices, advance our understanding of cardiovascular diseases, and ultimately contribute to a healthier and more sustainable future,” they wrote".

 

 

 

 

Link to the publication: www.jpost.com

Read Less
Israeli researchers form smallest-ever light source with switchable colors

Israeli researchers form smallest-ever light source with switchable colors

3 August, 2023

Colored light and its tunability are the basis of many essential modern-day technologies from lighting and displays to fast optical fiber-communication networks.

Read More

 

A “significant breakthrough” in color switching for nanocrystals that unlocks exciting possibilities for a simple, energy-efficient display design and for tunable light sources for many technologies has been achieved by researchers at the Hebrew University of Jerusalem (HU).

Colored light and its tunability are the basis of many essential modern-day technologies from lighting and displays to fast optical fiber-communication networks. 

The discovery also has potential applications for sensitive sensors of various substances, including biological and neuroscience uses and advancements in quantum-communication technologies. This nanomaterial breakthrough holds the promise of inspiring exciting innovations in the future, the team said.

 

They published their findings in the prestigious journal Nature Materials under the title “Electric field induced color switching in colloidal quantum dot molecules at room temperature.” 

While nanocrystals offer color tunability and are used in various technologies, achieving a variety of colors requires using different nanocrystals for each color and dynamic switching between colors has not been possible. 

 

Overcoming nanocrystal tech barriers

A team at HU’s Institute of Chemistry and the Center for Nanoscience and Nanotechnology including graduate student Yonatan Ossia with seven other members and led by Prof. Uri Banin, have now come up with an innovative solution to this problem. By developing a system of an “artificial molecule” made of two coupled semiconductor nanocrystals that emit light in two different colors, fast and instantaneous color switching was achieved. 

Banin said that “our research is a big leap forward in nanomaterials for optoelectronics. This is an important step in our exposition of the idea of “nanocrystal chemistry” launched just a few years ago in our research group in which nanocrystals are building blocks of artificial molecules with exciting new functionalities.

Being able to switch colors so quickly and efficiently on the nanoscale as we have achieved has enormous possibilities. It could revolutionize advanced displays and create color-switchable single photon sources.” 

When taking color-emitting semiconductors to the nanoscale (a nano is one-billionth of a meter, 100,000 times smaller than a human hair), an effect called quantum confinement comes into play. Changing the size of the nanocrystal modifies the color of the emitted light, so bright light sources can be obtained covering the entire visible spectrum.

 

Because of the unique color tunability of such nanocrystals and their easy fabrication and manipulation using wet chemistry, they are already widely used in high-quality commercial displays, giving them excellent color quality along with significant energy-saving characteristics.

But until now, achieving different colors such as needed for the different RGB pixels (composed of red, green and blue subpixels that light up at different intensities to create different colors and use in electronic displays like TVs, computer monitors, lighting, and digital cameras) required the use of different nanocrystals for each specific color. However, dynamic switching between the different colors was not possible.

Although color tuning of single colloidal nanocrystals which behave as “artificial atoms” has been studied and implemented in prototype optoelectronic devices, changing colors actively has been challenging because of the diminished brightness inherently accompanying the effect that produced only a slight shift of the color. 

The research team overcame this limitation, by creating a novel molecule with two emission centers in which an electric field can tune the relative emission from each center, changing the color, yet, without losing brightness.

The artificial molecule can be made such that one of its constituent nanocrystals is tuned to emit “green” light, while the other “red” light. The emission of this new dual color emitting artificial molecule is sensitive to external voltage inducing an electric field – one polarity of the field induces emission of light from the “red” center, and switching the field to the other polarity, the color emission is switched instantaneously to “green”, and vice versa.

This color-switching phenomenon is reversible and immediate, as it does not include any structural motion of the molecule. 

Link to the publication: www.jpost.com

 

 

Read Less
Breakthrough ADHD treatment could ‘transform the lives of children’

Breakthrough ADHD treatment could ‘transform the lives of children’

2 August, 2023

A breakthrough in treating attention-deficit/hyperactivity disorder could “significantly improve” the lives of children with the condition, experts said.

Read More

A new study found that brain stimulation combined with cognitive training can improve symptoms of ADHD.

“ADHD is one of the most common neurodevelopmental disorders affecting children across the world,” Ornella Dakwar-Kawar, a post-doctoral researcher at the Hebrew University of Jerusalem, said in a press release. “Treating the condition with medication improves a child’s attention span and overall mood, however … there can be side effects including headache and a loss of appetite,” Dakwar-Kawar added. “There is, therefore, a pressing need for developing and testing novel, non-pharmacological interventions for ADHD.”

ADHD symptoms include trouble paying attention, overactivity, and impulsive behaviors, according to the Centers for Disease Control and PreventionThe CDC estimates that 6 million children in the US ages 3 to 17 have been diagnosed with ADHD. The condition is usually treated with a combination of behavior therapy and medication. Researchers at the University of Surrey and the Hebrew University conducted a clinical trial with 23 children ages 6 to 12 who were unmedicated. The researchers administered a non-invasive brain stimulation with a mild electrical current running through two electrodes. Cognitive treatment included problem-solving and reading comprehension. After two weeks, 55% of the children showed significant clinical improvements in their ADHD symptoms, as reported by their parents, in comparison to 17% of children in the control group who received placebo brain stimulation. The improvements were maintained at three weeks post-trial, with 64% reporting positive effects from the treatment compared to 33% in the control group. The study, published in the journal Translational Psychiatry, also found that participants had changes in their brain electrical activity patterns, even three weeks after treatment. “I believe that the scientific community is duty-bound to investigate and develop ever more effective and longer-lasting treatments for ADHD,” said Roi Cohen Kadosh, co-lead of the study and professor of cognitive neuroscience at the University of Surrey.

“The findings we demonstrate in our study suggest that a combination of transcranial direct current stimulation (tRNS), which is shown to be safe with minimal side effects, has the potential to transform the lives of children and their families,” Kadosh added. “The results from this proof-of-concept study, together with previous results we received using tRNS, increase our confidence that in the future non-invasive brain stimulation may be able to provide an alternative to medication as a treatment pathway for children,” Kadosh continued. “However, our important test will be the results from a multi-center clinical trial with a larger sample that we will start soon.” Scientists noted that further research and trials would need to be done to make brain stimulation a practical therapy for children with ADHD.

“This is an important first step in offering new therapeutic options for ADHD. Future studies, with larger and more varied samples, should help establish this as a viable therapy for ADHD, and help us understand the underlying mechanisms of the disorder,” said Dr. Mor Nahum, co-lead of the study and head of the Computerized Neurotherapy Lab at the Hebrew University.“If the results will be replicated in future larger studies we will be able to offer a novel, promising non-invasive, and safe treatment to large number of children and their families not only in the field of ADHD but in other neurodevelopmental disorders,” said professor Itai Berger, co-lead of the study.

 

 

 

 

 

 

Link to the publication: nypost.com

Read Less