High-Dimensional Photonics Accelerates Quantum Computing

9 October, 2024
High-Dimensional Photonics Accelerates Quantum Computing

A new study has made significant progress in quantum computing through photonic-measurement-based quantum computation. Their innovative method uses high-dimensional spatial encoding to create large cluster states more efficiently, addressing key challenges in scalability and computation speed. This paves the way for faster, resource-efficient, and fault-tolerant quantum computers.


A new study, published in Nature Photonics, by Prof. Yaron Bromberg and Dr. Ohad Lib from the Racah Institute of Physics at the Hebrew University of Jerusalem has made significant strides in advancing quantum computing through their research on photonic-measurement-based quantum computation. This method holds the potential to overcome some of the challenging obstacles in quantum computation, offering a more scalable and resource-efficient solution by using high-dimensional spatial encoding to generate large cluster states.

 

Quantum computers are facing a major roadblock in producing large cluster states necessary for computations. The standard approach sees detection probabilities decreasing exponentially as the number of photons increases. Prof. Bromberg and Dr. Lib's study addresses this issue by encoding multiple qubits within each photon through spatial encoding. This innovative approach has successfully generated cluster states with over nine qubits at a frequency of 100 Hz, a remarkable achievement in the field.

Additionally, the researchers demonstrated that this method substantially reduces computation time by enabling instantaneous feedforward between qubits encoded within the same photon. This breakthrough opens the door to more resource-efficient quantum computations, potentially leading to faster, fault-tolerant quantum computers capable of handling complex problems.

Prof. Bromberg commented, "Our results show that using high-dimensional encoding not only overcomes previous scalability barriers but also offers a practical and efficient approach to quantum computing. This represents a major leap forward."

Dr. Lib added, "By tackling both scalability and computation duration issues, we've paved a new way forward for measurement-based quantum computation. The future of quantum technology just became a little closer."

This study marks an important milestone in the ongoing pursuit of realizing the full potential of quantum computing through photonics.

 

The research paper titled “Resource-efficient photonic quantum computation with high-dimensional cluster states” is now available at Nature Photonics and can be accessed at https://doi.org/10.1038/s41566-024-01524-w

 

Researchers:

Ohad Lib, Yaron Bromberg

Institution:

Racah Institute of Physics, The Hebrew University of Jerusalem

 

The Hebrew University of Jerusalem is Israel’s premier academic and research institution. With over 23,000 students from 90 countries, it is a hub for advancing scientific knowledge and holds a significant role in Israel’s civilian scientific research output, accounting for nearly 40% of it and has registered over 11,000 patents. The university’s faculty and alumni have earned eight Nobel Prizes, two Turing Awards a Fields Medal, underscoring their contributions to ground-breaking discoveries. In the global arena, the Hebrew University ranks 81st according to the Shanghai Ranking. To learn more about the university’s academic programs, research initiatives, and achievements, visit the official website at http://new.huji.ac.il/en