Enhancing Chickpea Irrigation Efficiency, Yield and Sustainability

27 March, 2024
Enhancing Chickpea Irrigation Efficiency, Yield and Sustainability

Non-invasive method to assess chickpea water status, providing farmers with an effective tool for optimizing irrigation schedules and potentially enhancing the sustainability of chickpea farming! This approach has the capacity to revolutionize chickpea management by not only increasing crop yields but also improving water efficiency. The implications extend beyond the farm, impacting global food security and contributing positively to environmental concerns.

New study published by the Hebrew University of Jerusalem (HUJI) introduces a non-invasive technique for evaluating chickpea water status, offering farmers a powerful tool to fine-tune irrigation schedules and potentially elevate the sustainability of chickpea cultivation. This method holds the potential to transform chickpea management, amplifying both crop yields and water efficiency. Its ramifications stretch far beyond the agricultural realm, resonating with global food security efforts and addressing pressing environmental challenges.

The remote sensing aspect of the project is led by researchers at the Hebrew University, including Dr. Ittai Herrmann from The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture. PhD. candidate Roy Sadeh (HUJI) trained and tested spectral models for quick and non-invasive assessment of chickpea water status based on leaf water potential estimation from space and ground. The agronomical aspects were covered by Hebrew University PhD. student Asaf Avneri under the guidance of Dr. Ran Lati (ARO) and Prof. Shahal Abbo (HUJI) and with Dr. David Bonfil (ARO). This innovative approach holds immense promise for transforming agriculture practices, particularly in regions facing water scarcity.

Chickpea, also known as garbanzo beans, is a crucial global grain legume, serving as a staple protein source around the world and especially in the Middle East, South Asia and the Mediterranean. The proposed method holds transformative potential for agriculture by enabling farmers to optimize irrigation schedules efficiently. This could lead to increased crop yields and improved water use efficiency, contributing to resource conservation and reduced environmental impact. Furthermore, the innovation has broader implications for global food security, showcasing the impact of advanced precision-smart agricultural technologies on sustainable farming practices.

The study, conducted in two farm experiments and two commercial fields, used ground-based hyperspectral imaging and satellite images from the Vegetation and Environment monitoring on New Micro-Satellite (VENmS) program. It aimed to remotely measure leaf water potential of field-grown chickpeas under different irrigation treatments. While doing so, the limited effect of leaf area index on the ability to remotely estimate leaf water potential was revealed.

Roy Sadeh developed spectral estimation models using vegetation indices and machine learning based on all spectral bands. The study demonstrated that the normalized difference spectral index (1600 and 1730 nm) provided the most accurate estimation of leaf water potential amongst the vegetation indices. While the artificial neural network models improved the assessment accuracy and performed similarly well for ground and spaceborne data. The new method offers significant benefits to farmers by providing a rapid, non-destructive tool to enhance irrigation scheduling in chickpea fields, potentially improving variable rate irrigation management. Additionally, this tool holds promise for physiologists and breeders in screening for drought-tolerant chickpea genotypes, paving the way for sustainable farming practices on a larger scale. The next step of the project is combining space-borne spectral data to improve leaf water potential estimation is ongoing and Omer Perach (a PhD candidate) has presented very nice preliminary results (ECPA 2023) and the additional paper is being written these days.

The research paper titled “Chickpea leaf water potential estimation from ground and VENµS satellite” is now available in Springer Nature and can be accessed at https://link.springer.com/article/10.1007/s11119-024-10129-w#Ack1

Researchers:

Roy Sadeh1, Asaf Avneri1,2, Yaniv Tubul1, Ran N. Lati2, David J. Bonfil3, Zvi Peleg1, Ittai Herrmann1

Institutions:

1) The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem

2) Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO) - Newe Ya’ar Research Center

3) Field Crops and Natural Resources Department, Agricultural Research Organization (ARO) - Gilat Research Center

Images:

Title: Chickpea irrigation treatments in Gilat research station

Credit: Shlomi Aharon

Title: Chickpea plants

Credit: Roy Sadeh

Title: Dual-field of view system for spectral data collection operated by Roy

Credit: Asaf Avneri

Disclaimer: In these challenging times of war and crisis, Hebrew University of Jerusalem is resolute in its dedication to advancing research and education. We stand in full support of the brave individuals on the frontlines, safeguarding our nation and the well-being of all Israelis, and extend our deepest gratitude and unwavering solidarity to our community and fellow citizens. Together, we shall prevail against the challenges that confront us, and our shared commitment to the well-being of all Israelis and the pursuit of knowledge remains resolute.

The Hebrew University of Jerusalem is Israel's premier academic and research institution. Serving over 23,000 students from 80 countries, the University produces nearly 40% of Israel’s civilian scientific research and has received over 11,000 patents. Faculty and alumni of the Hebrew University have won eight Nobel Prizes and a Fields Medal. For more information about the Hebrew University, please visit http://new.huji.ac.il/en.